Skip to main content
Ctrl
+
K
Welcome to Chemistry Lessons Using Jupyter Notebooks
1. Jupyter Notebook Tutorials
1.1. Jupyter Notebook Tutorial
1.2. Advanced Jupyter Notebook Tutorial
2. Coding Concepts
2.1. Variables in Python
2.2. Arrays and Matrices
2.3. for loops
2.4. Functions
2.5. Plotting with matplotlib
2.6. Numeric Integration
3. Math Concepts in Physical Chemistry
3.1. Logarithms and Exponential Functions
3.2. Differentiation and Critical Points
3.3. Integration in 1D
3.4. Derivatives of Multivariable Functions
3.5. Discrete Probability
4. Physical Chemistry
4.1. Introduction
4.1.1. Non-bonded Interactions
4.2. Statiscial Thermodynamics
4.2.1. Boltzmann Factor
4.2.2. Introduction to Probability
4.2.3. Thermodynamic Properties from the Partition Function
4.2.4. Partition Function for a Monatomic Ideal Gas
4.2.5. Partition Function for a Diatomic Ideal Gas
4.2.6. Classical Ideal Gas
4.2.7. Kinetic Theory of Gasses from the Classical Ideal Gas
4.2.8. Microscopic View of Entropy
4.2.9. Equations of State from Lattice Gas Models
4.3. Thermodynamics
4.3.1. The First Law of Thermodynamics
4.3.2. Heat Work and Calculating
\(\Delta U\)
4.3.4. Thermodynamic Cycles
4.3.5. Thermodynamic Cycles: Solving exam problems and other examples
4.3.6. Enthalpy
4.3.7. The Carnot Cycle
4.3.8. Second Law of Thermodynamics
4.3.9. Heat Engine Diagrams
4.3.11. The Third Law of Thermodynamics
4.3.12. First Derivative and Maxwell Relations
4.3.13. Maxwell Relations Applied
4.3.14. Free Energy and Legendre Transforms
4.3.15. The Pressure and Temperature Dependence of the Gibbs Energy
4.3.16. Phase Diagrams and Phase Equilibria
4.3.17. Chemical Potential from the Partition Function
4.3.18. Thermodynamics of Solutions
4.3.19. Ideal and Non-ideal Solutions
4.3.20. Chemical Equilibrium
4.4. Kinetics
4.4.1. Chemical Kinetics and Rate Laws
4.4.2. Integrated Rate Laws
4.4.3. Reversible Reactions
4.4.4. Transition State Theory and Temperature Dependence of the Rate Constant
4.4.5. Reaction Mechanisms
4.4.6. Catalysts
4.4.7. Enzyme Kinetics: The Michaelis-Menten Mechanism
4.4.8. Cooperative Binding Kinetics
4.4.9. Competitive Inhibition
4.5. Quantum Mechanics
4.5.1. The History of Quantum Mechanics
4.5.2. Wave Particle Duality and the Classical Wave Equation
4.5.3. Schrodinger Equation
4.5.4. Particle in a Box
4.5.5. The Uncertainty Principle and Applications of Particle in a Box
4.5.6. The Postulates and Formalism of Quantum Mechanics
4.5.7. The Momentum Operator
4.5.8. Operator Algebra
4.5.9. Particle in a Sphere
4.5.10. Properties of Particle in a Sphere
4.5.11. The Hydrogen Atom
4.5.12. Properties of the Hydrogen Atom
4.5.13. The Hydrogen Atom Absorption Spectrum
4.5.14. Special Functions in Quantum Mechanics
4.5.15. The Helium Atom
4.5.16. Variational Method in Quantum Mechanics
4.5.17. Single Electron Molecule in the Variational Approach
4.5.18. Improving the H
\(_2^+\)
Variational Approximation
4.5.19. The H
\(_2\)
Molecule using the Variational Method in a Minimal Basis
4.5.20. H
\(_2\)
Configuration Interaction
4.5.21. Harmonic Oscillator
4.5.22. Vibrational Spectroscopy
4.5.23. Basis Functions
4.5.24. Variational Solution to the Harmonic Oscillator
4.5.25. The Morse Oscillator
4.5.26. Rigid Rotator
4.5.27. Rigid Rotator Variational Solution
4.5.28. Rigid Rotator Continued…
4.6. Electronic Structure
4.6.1. Hartree-Fock
4.6.2. Hartree-Fock Code for the H2 Molecule in a Minimal STO-3G basis
Index